Competence building for designing and running selective breeding programs for aquaculture species

Bjarne Gjerde Senior scientist, Nofima/Professor II, NMBU

Selective breeding = Genetic improvement

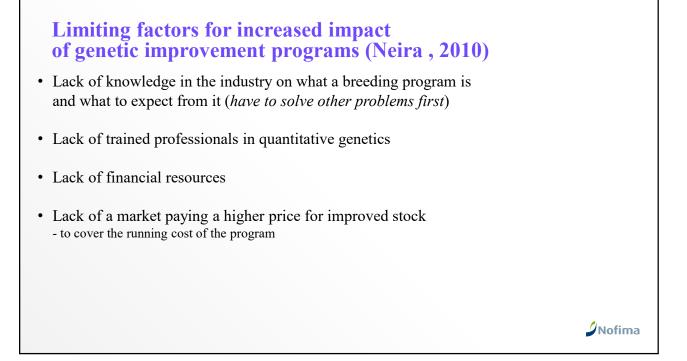
- Genetic variation among individuals for important economic traits
- Identify and select the best as parents for the next generation
- Genetic gain = Increase in performance from one gen. to the next
- Genetic gain is cumulative Like walking in a stair High Benefit/Cost ratio
- Outcome
 - reduced production costs
 - improved product quality
 - increased resource efficiency

2Nofima

🖉 Nofima

Year	No. progra	ms using sib ir	Asia (except Japan)		
started	Developed	Developing		Africa South-America (except Chile)	
countries	countries	Total	Central America Caribbean		
1970 – 1979	4	0	4		
980 - 1989	5	1	5		
990 - 1999	22	11	30		
2000 - 2008	31	29	60		
Total	62	41,	101		
	•			-	

	and the second second	Rye et al., 2010)	2			
Species	No. of programs ^a	No. of families per program	Average no. of traits selected	World prod. in 2005, (1000 tonnes)		
Common carp	8	76	2.0	3044		
Rohu carp	1	60-70	2	1196		
Silver barb	1	-	1	97		
Tilapia Nile	20	229	3.6	1703		
Tilapia blue	2	90	2.0	2		
Tilapia red	4	125	4.0	-		-
Tilapia O. shiranus	1	51	1.0	-	8 % of production based on	
Channel catfish	1	200	4	380	•	
African catfish	1	70	1	29	improved species	
Striped catfish	1	182	3	436		
Atlantic salmon	13	280	5.4	1236		
Chinook salmon	2	100	1.5	24	Close to 100 % for the most	
Coho salmon	4	133	2.7	117		
Rainbow trout	13	206	5.2	487	important farm animals and	
European whitefish	1	70	2.0	1	•	
Turbot	2	60		7	plant crop species	
Atlantic cod European seabass	3	110 100	4.0 5	8 58		
Sea bream	3	100	5	58		
Freshwater prawn	2	82	1	205		
Shrimp, P. monodon	2	212		723		
Shrimp, P. vannamei	100	197	2.0	1599		
Abalone	4	210	1.7	334		
Oysters	3	48	43	4615		
Mussel	1	60	3.0	1410		
Total listed species	101		2.0	17.822		
Total all species	101	-		48.150 ^b		Nofi


2

Food and Agricultu Organization of the United Nations		SOURCES	
Contr	asting AqGR	with Terrestri	al GR
Sector Genetic Resources	Number of species farmed	Number of major farmed species	Number of strains/breeds/varieties
Plant	6000	9	~7,400,000
Livestock	37	5	~9000
LIVESLOCK			
Forests	7900	2400	~700

Contribution (%) to world aquaculture production

Continent	Volume	Value
Asia	90.8	77.4
Europe	4.2	9.3
Latin America	4.0	11.4
Africa	0.8	1.0
Oceania	0.2	0.9
	100.0	100.0

Nofima

Required competence in selective breeding programs

- Quantitative genetics
- Genomics
- Statistics multitrait mixed linear models
- Production biology and production of the actual species
- Economy relative weighting of traits

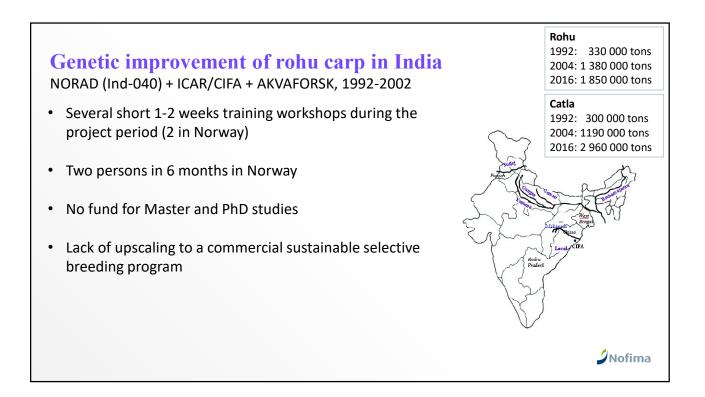
2Nofima

Nofima

Competence building

Basic knowledge Undergraduate, Bachelor/Master degree - 5 years

Post graduate, PhD – 4 years


- Theoretical courses
- Thesis on (preferably own) experimental data
- Work in a scientific environment to mature as scientist

Project and job related competence and experience

(becoming a skilful scientist requires time)

Experience from GIFT, the Philippines Rohu carp, India

GIFT – Genetic Improvement of Farmed Tilapia ADB (RETA 5279) + UNDP/DGIP, INT/88/019), 1988-1998 WorldFish and AKVAFORSK	1988: 130 000 tons 1998: 725 000 tons 2016: 2 200 000 tons
Several short 1-2 weeks training workshops in the Philippines during	the project period
Two workshops in Norway	
No funds for Master and PhD studies	
Large world-wide impact	
	2 Nofima

<list-item><list-item><list-item><list-item>

Conclusions

- Establish (long term) selective breeding program
- Build strong scientific groups to make it attractive to return and work back home
- Establish strong relationships between University/Institutes and the Industry for the benefits of both
- Give (some) scholarship to persons with permanent positions back home conditions on returning back home
- Funding of short term training courses for Post Docs
- On line training in specific topics (e.g. FAO-Iran)